An Eternal Domination Problem in Grids
نویسندگان
چکیده
منابع مشابه
Domination, eternal domination and clique covering
Eternal and m-eternal domination are concerned with using mobile guards to protect a graph against infinite sequences of attacks at vertices. Eternal domination allows one guard to move per attack, whereas more than one guard may move per attack in the m-eternal domination model. Inequality chains consisting of the domination, eternal domination, m-eternal domination, independence, and clique c...
متن کاملEternal domination: criticality and reachability
We show that for every minimum eternal dominating set, D, of a graph G and every vertex v ∈ D, there is a sequence of attacks at the vertices of G which can be defended in such a way that an eternal dominating set not containing v is reached. The study of the stronger assertion that such a set can be reached after a single attack is defended leads to the study of graphs which are critical in th...
متن کاملEternal domination on 3 × n grid graphs
In the eternal dominating set problem, guards form a dominating set on a graph and at each step, a vertex is attacked. After each attack, if the guards can “move” to form a dominating set that contains the attacked vertex, then the guards have successfully defended against the attack. We wish to determine the minimum number of guards required to successfully defend against any possible sequence...
متن کاملAn Upper Bound on F -domination Number in Grids †
A graph G is 2-stratified if its vertex set is colored into two nonempty classes, where one class of vertices colored red and the other color class blue. Let F be a 2-stratified graph rooted at one fixed blue vertex v. The F -domination number of G is the minimum number of red vertices of G in a red-blue coloring of the vertices of G such that for every blue vertex v of G, there is a copy of F ...
متن کاملPower Domination on Triangular Grids
The concept of power domination emerged from the problem of monitoring electrical systems. Given a graph G and a set S ⊆ V (G), a set M of monitored vertices is built as follows: at first, M contains only the vertices of S and their direct neighbors, and then each time a vertex in M has exactly one neighbor not in M , this neighbor is added to M . The power domination number of a graph G is the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theory and Application of Graphs
سال: 2017
ISSN: 2470-9859
DOI: 10.20429/tag.2017.040102